Skip to content

Tutorial: Use GitLab Observability with a Django application

FLAG: The availability of this feature is controlled by a feature flag. For more information, see the history of the Distributed tracing feature.

In this tutorial, we'll show you how to create, configure, instrument, and monitor a Django application using GitLab observability features.

Before you begin

To follow along this tutorial, you should have:

  • A GitLab Ultimate subscription for GitLab.com or GitLab self-managed
  • A local installation of Python 3 and Django (You can install it with python -m pip install Django.)
  • Basic knowledge of Git and Python
  • Basic knowledge of the core concepts of OpenTelemetry

Create a GitLab project

First, create a GitLab project and a corresponding access token. This tutorial uses the project name animals.

  1. On the left sidebar, at the top, select Create new ({plus}) and New project/repository.
  2. Select Create blank project.
  3. Enter the project details.
    • In the Project name field, enter animals.
  4. Select Create project.
  5. In the animals project, on the left sidebar, select Settings > Access tokens.
  6. Create an access token with the api scope and Developer role. Store the token value somewhere safe—you'll need it later.

Create a Django application

To create an application:

  1. From the command line, run the command:

    python -m django startproject animals_app
  2. Check that the Django server is running correctly:

    python manage.py runserver
  3. Ensure that the server is running correctly by visiting http://localhost:8000.

  4. A Django projects contains multiple applications within a project. To create an application to manage our list of fake animals, run the command:

    python manage.py startapp animals
  5. To create the initial view for the new animals application, in the animals/views.py file add the following code:

    from django.http import HttpResponse
    
    def index(request):
        return HttpResponse("This is where the list of animals will be shown.")
  6. In animals/urls.py, add the following code:

    from django.urls import path
    from . import views
    
    urlpatterns = [
        path('', views.index, name='index'),
    ]
  7. Additionally, update the room urls.py to include the animals app:

    path('animals/', include('animals.urls'))
  8. In animals_app/settings.py, add the application:

    INSTALLED_APPS = [
        ...
        'animals.apps.AnimalsConfig',
    ]
  9. In animals/models.py, create a model to define an animal:

    from django.db import models
    class Animal(models.Model):
        name = models.CharField(max_length=200)
        number_of_legs = models.IntegerField(default=2)
        dangerous = models.BooleanField(default=False)
  10. With the model defined, create a database migration. This will create a file that describes the changes to the database.

    python manage.py makemigrations animals
  11. Run the newly created migration:

    python manage.py migrate

Instrument the application with OpenTelemetry

  1. Install the required dependencies:

    pip install opentelemetry-api opentelemetry-sdk opentelemetry-exporter-otlp-proto-http
  2. Metrics and traces require different imports. In the manage.py file, import the required modules:

    from opentelemetry.instrumentation.django import DjangoInstrumentor
    
    from opentelemetry.sdk.resources import SERVICE_NAME, Resource
    
    from opentelemetry import trace
    from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
    from opentelemetry.sdk.trace import TracerProvider
    from opentelemetry.sdk.trace.export import BatchSpanProcessor
    
    from opentelemetry import metrics
    from opentelemetry.exporter.otlp.proto.http.metric_exporter import OTLPMetricExporter
    from opentelemetry.sdk.metrics import MeterProvider
    from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader, ConsoleMetricExporter
  3. To instrument the application, in the manage.py file, add the following code.

    • Replace {{PROJECT_ACCESS_TOKEN}} and {{PROJECT_ID}} with the values from your project.
    • If you're using self-managed GitLab, replace gitlab.com with your self-managed instance hostname.
    resource = Resource(attributes={
        SERVICE_NAME: "animals-django"
    })
    os.environ.setdefault('OTEL_EXPORTER_OTLP_HEADERS', "PRIVATE-TOKEN={{PROJECT_ACCESS_TOKEN}}")
    traceProvider = TracerProvider(resource=resource)
    processor = BatchSpanProcessor(OTLPSpanExporter(endpoint="https://gitlab.com/api/v4/projects/{{PROJECT_ID}}/observability/v1/traces"))
    traceProvider.add_span_processor(processor)
    trace.set_tracer_provider(traceProvider)
    
    reader = PeriodicExportingMetricReader(
        OTLPMetricExporter(endpoint="https://gitlab.com/api/v4/projects/{{PROJECT_ID}}/observability/v1/metrics")
    )
    meterProvider = MeterProvider(resource=resource, metric_readers=[reader])
    metrics.set_meter_provider(meterProvider)
    meter = metrics.get_meter("default.meter")
    
    """Run administrative tasks."""
    os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'animals_app.settings')
    DjangoInstrumentor().instrument()

This code defines the service name animals-django, authenticates with GitLab, and instruments the application.

  1. To start collecting traces, restart the Django server. After refreshing /animals a few times, you should see traces in the GitLab UI.

    Django traces

  2. Optional. Django will also export certain metrics by default to GitLab, but custom metrics are supported too. For example, to increment a counter metric every time a page is loaded, add the following code:

    meter = metrics.get_meter("default.meter")
     work_counter = meter.create_counter(
         "animals.viewed.counter", unit="1", description="Counts the number of times the list of animals was viewed"
     )
    
     work_counter.add(1)

Django metrics